Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure

نویسندگان

  • K R Peters
  • W W Carley
  • G E Palade
چکیده

Capillary endothelial cells have a large population of small (65-80 nm diameter in transmission electron microscopy) vesicles of which a large fraction is associated with the plasmalemma of the luminal and abluminal side. We studied the fine structure and distribution of these plasmalemmal vesicles by high resolution scanning electron microscopy in cultured endothelial cells obtained from bovine adrenal cortical capillaries. Cell monolayers were covered with polylysine-coated silicon chips, split in high potassium buffer, fixed in aldehyde mixtures, and then treated with OsO4 and thiocarbohydrazide. After critical point drying, the specimens were coated with a thin (less than 2 nm) continuous film of chromium. On the cytoplasmic aspect of the dorsal plasmalemmal fragments seen in such specimens, plasmalemmal vesicles appear as uniform vesicular protrusions approximately 70-90 nm in diameter, preferentially concentrated in distinct large fields in which they occur primarily as single units. Individual plasmalemmal vesicles exhibit a striped surface fine structure which consists of ridges approximately 10 nm in diameter, separated by furrows and oriented as meridians, often ending at two poles on opposite sides of the vesicles in a plane parallel to the plasmalemma. This striped surface structure is clearly distinct from the cage structure of coated pits found, at low surface density, on the same specimens. The cytoplasmic aspect of the plasmalemma proper is covered by a fibrillar infrastructure which does not extend over plasmalemmal vesicles but on which the latter appear to be anchored by fine filaments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor.

A distinctive feature of many endothelia is an abundant population of noncoated plasmalemmal vesicles, or caveolae. Caveolae have been implicated in many important cellular processes, including transcytosis, endocytosis, potocytosis, and even signal transduction. Because caveolae have not been purified from endothelial cell surfaces, little is known directly about their structure and function i...

متن کامل

An electron microscope study on permeability in cerebral venules in the rats with hypertensive encephalopathy.

Hypertensive encephalopathy was induced in the rat by clipping one renal artery and contralateral nephrectomy. The possible changes of vascular permeability of the cerebral blood capillaries and venules were investigated by using ferritin as a tracer. The uninephrectomized rats served as controls. In controls, ferritin was never seen in the basement membranes, within plasmalemmal vesicles on th...

متن کامل

Asymmetric distribution of charged domains on the two fronts of the endothelium of iris blood vessels.

The authors have studied the distribution of anionic and cationic sites on both luminal and abluminal endothelial aspects of iridial vessels in Macaca mulatta and Macaca fascicularis. With the animals in general anesthesia, anionic ferritin (AF) and cationic ferritin (CF) were either injected intravenam or perfused at known intraocular pressure (15-20 mmHg) through the anterior chamber. AF intr...

متن کامل

Anionized and cationized hemeundecapeptides as probes for cell surface charge and permeability studies: differentiated labeling of endothelial plasmalemmal vesicles

To obtain small membrane markers easily accessible to the charged groups of the cell surface, we prepared, from hemeundecapeptide (HUP), three derivatives that maintain the peroxidatic activity: the anionized hemeundecapeptide, Mr 1,963, estimated diameter 1.68 nm, pl 3.5, for the detection of basic groups; and both a cationized hemeundecapeptide containing predominantly tertiary amino groups, ...

متن کامل

Visualizing caveolin-1 and HDL in cholesterol-loaded aortic endothelial cells.

Caveolae are vesicular invaginations of the plasma membranes that regulate signal transduction and transcytosis, as well as cellular cholesterol homeostasis. Our previous studies indicated that the removal of cholesterol from aortic endothelial cells and smooth muscle cells in the presence of HDL is associated with plasmalemmal invaginations and plasmalemmal vesicles. The goal of the present st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 101  شماره 

صفحات  -

تاریخ انتشار 1985